Inverse stochastic resonance in networks of spiking neurons
نویسندگان
چکیده
Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron's intrinsic dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems.
منابع مشابه
Stochastic resonance in noisy spiking retinal and sensory neuron models
Two new theorems show that small amounts of additive white noise can improve the bit count or mutual information of several popular models of spiking retinal neurons and spiking sensory neurons. The first theorem gives necessary and sufficient conditions for this noise benefit or stochastic resonance (SR) effect for subthreshold signals in a standard family of Poisson spiking models of retinal ...
متن کاملDouble inverse stochastic resonance with dynamic synapses.
We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature sho...
متن کاملStochastic partial differential equations in Neurobiology: linear and nonlinear models for spiking neurons
Stochastic differential equation (SDE) models of nerve cells for the most part neglect the spatial dimension. Including the latter leads to stochastic partial differential equations (SPDEs) which allow for the inclusion of important variations in the densities of ion channels. In the first part of this work, we briefly consider representations of neuronal anatomy in the context of linear SPDE m...
متن کاملThe Space-Clamped Hodgkin-Huxley System with Random Synaptic Input: Inhibition of Spiking by Weak Noise and Analysis with Moment Equations
We consider a classical space-clamped Hodgkin-Huxley model neuron stimulated by synaptic excitation and inhibition with conductances represented by Ornstein-Uhlenbeck processes. Using numerical solutions of the stochastic model system obtained by an Euler method, it is found that with excitation only, there is a critical value of the steady-state excitatory conductance for repetitive spiking wi...
متن کاملDynamical structure underlying inverse stochastic resonance and its implications.
We investigate inverse stochastic resonance (ISR), a recently reported phenomenon in which the spiking activity of a Hodgkin-Huxley model neuron subject to external noise exhibits a pronounced minimum as the noise intensity increases. We clarify the mechanism that underlies ISR and show that its most surprising features are a consequence of the dynamical structure of the model. Furthermore, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017